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A method is presented for solving the toroidal magnetohydrodynamic equilibrium equation 
in a coordinate system based on the magnetic field lines. Both fixed boundary (conducting 
shell) and free boundary (external coil) boundary conditions are considered. A comparison 
with a special analytic solution is made. The method is useful for obtaining equilibria to use 
in tokamak stability and transport calculations. 

I. INTRODUCTION 

The calculation of axisymmetric solutions to the magnetohydrodynamic 
equilibrium equation Vp = J x B plays a central role in tokamak stability and 
transport studies, as well as in the design of future toroidal devices. Methods for solv- 
ing the toroidal equilibrium equation in the GradShafranov form, 

(27r) *x*v (x *vx) + 47cx*p + x,: gg’ = 0, (1) 

have been known for some time [l-4]. Here x(x, z) is the poloidal magnetic flux 
function, ph) is the fluid pressure, xOg(x) 3 x*B V# is the toroidal field function, 
(x, 4, z) form a cylindrical coordinate system, and ’ denotes 3/8x. 

For many tokamak stability studies, it is not x(x, z) that is needed but rather x(w) 
and the inverse functions x(0, w) and z(t9, w), where (w, t9) are generalized magnetic 
flux coordinates with properties to be described in Section II. To  obtain these inverse 
functions numerically, one typically solves the Grad-Shafranov equation for x(x, z) 
on a rectangular grid by standard methods and then employs a mapping procedure 
[5 ] to contour levels of constant v and 8. Thus, the (x, z) coordinates of the inter- 
section of the contours Bi E i&9 and vj =~SI,U form a discrete set of points 
(x,,~; z~,,~) E [x(0,, wi); z(Bi, wi)] which collectively define a finite difference approx- 
imation to the exact mapping [x(8, I,u); z(/3, u/)1. 

The discrete mapping obtained in this manner is often adequate but in general 
satisfies the flux coordinate form of the finite differenced equilibrium equation only to 
within some error introduced by truncation error in the original (x, z) solution and in 
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the contouring. The fact that this error is limited by the truncation error inherent in 
the finite difference equations rather than by an iteration tolerance (which can be 
made arbitrarily small) can render this method unacceptable for producing 
equilibrium for some sensitive stability studies. Also, when solving for equilibrium 
with large values of p = 87rp/B*, the magnetic axis shift is comparable to the minor 
radius, A - a, and large local gradients of flux and current can arise. A difference 
method based on equal increments in real space is not optimal for resolving these 
spaially local steep gradients. 

We discuss in this paper the iterative metric method, a finite difference method for 
solving for the discrete coordinate functions (xi,/; z~,,~) such that the flux coordinate 
form of the finite differenced equilibrium equation based on these points is satisfied to 
an arbitrarily small tolerance. In addition, the numerical grid on which finite 
differences are evaluated is tied to the equilibrium solution itself in such a way that 
grid points automatically accumulate in regions of steep gradients. 

In Section II the problem is mathematically defined by introducing the (w, 19) coor- 
dinate system and expressing the equilibrium equation in these coordinates. In Sec- 
tion III the basic solution method is presented for the case where the shape of the 
plasma/vacuum interface does not change (fixed boundary). This forms the core of 
the more involved procedure, described in Section IV, for solving the free boundary 
problem in which currents in external coils define the boundary conditions. The loca- 
tion of the plasma/vacuum interface is then determined as part of the solution. Both 
of these methods are illustrated in Section V, where some numerical solutions are 
presented. Verification is accomplished by computing an equilibrium for which an ex- 
act solution exists. 

II. FLUX COORDINATES AND THE EQUILIBRIUM EQUATION 

If the magnetic field lines in an axisymmetric tokamak plasma form nested toroidal 
surfaces, the coordinates (v, tY,#) can be defined (see Fig. 1) such that v/ is constant 
on these surfaces (i.e., B Vy/ = 0), 8 is a periodic poloidal coordinate, 4 is the 
toroidal symmetry angle, and the Jacobian is of the form 

.F = (Vly x VI3 vq$-’ =p(x/xo)“w”. 

Here 0 < 8 < 27r, 0 < Q ( 2n, 0 < I,Y < 1, ,D and x0 are constants included for nor- 
malization, and m and n are arbitrary integers. The vectors Vyl and V8 are both 
orthogonal to 04 but are not necessarily orthogonal to each other. By appropriately 
choosing m and n, several axisymmetric nonorthogonal magnetic flux coordinate 
systems discussed previously can be obtained [ 5-71. 

Gradients and divergences can be evaluated in these coordinates by noting that for 
any axisymmetric scalar a and vector A, 

Va = a,VW + a,vB, Pa) 
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Plasma I Vacuum 
Interface 

FIG. I. Nonorthogonal flux coordinate system, (w, 19, #), used in solving the inverse tokamak 
equilibrium problem. w is a flux coordinate, 6’ a poloidal angle coordinate, and ) the toroidal symmetry 
angle. 

and 

y-v A = [(ve x V$ A)x*.Ph”* + (V@ X VW A)x*fh@l, 

+[(-+a x v# A)x2J-h*e + (V# x Vv A)x2.~heel,. W) 

Here, the Jacobian Y- and the metric elements ha4 = x-*.PVa V/3 can be expressed 
as derivatives of the cylindrical spatial coordinates (x, z): 

.P = x(x, z, - X @  zo), PC) 
he” = (xi + z;)/.F, (2d) 
h”’ = (x:, + z:)/<P, (2e) 
h** = -(x,x, + zezJ2-. W) 

Subscripts are used to denote differentiation with respect to I(/ and 8. 
By using Eqs. (2) to evaluate the first term in Eq. (1) and noting that by definition, 

x =x(w) (i.e., x0 = 0), the inverse equilibrium equation takes the form 

d*x(v/) E x2V x-*V&) = x*~+[~~h”“), + ~,h”“)B] 
= -(27c)*(4zx2p + x; gg’), 

(34 

and the Jacobian constraint requires that (x, z) satisfy 

x(x, zfj - WJ = P(x/xo)mvn. (3b) 

Given the functions pk) and g(x) and the appropriate boundary conditions, Bq. (3) 
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can be regarded as an equation for x(w) and for the two-dimensional coordinate func- 
tions x(13, v/) and z(L), w). 

In practice, it is convenient to prescrible the value of the total plasma current when 
solving Eq. (3). In this case, the functional forms of the fluid pressure pk), and the 
toroidal field function gh), are taken to be of the form 

W 

and 

&>= 1-7x5 (4b) 

where 

xx- ~x~~~-xx(w~I/~x~~~-x~~~1. PC) 
Here y is determined by the requirment that the total plasma current remain fixed; 
i.e., 

I,. = -271 *’ dli/ I i 2n dBtP [p’ + (47$ ‘(xo/x)2gg’ J, (5) 
“II ‘0 

p0 and pb are the specified values of pressure at the magnetic axis and plasma boun- 
dary, and a and /3 are input parameters. 

Once x(w), x(0, w), and ~(0, w) are known, the magnetic field and current can be 
obtained from the defining relations 

B = (2~) ‘x,(w) V4 x Vv + x,g(v) VA (6) 

and 

J = .P [ (J VS) 04 x VW + (J V#) Vy/ X Ve]. (7) 

The components of J come from Ampere’s law: 

J ve = -, F ‘x0 g,/4z, @a> 
J “4 = V k&z V&/&z’. (8b) 

The safety factor q(w) is obtained by performing a surface integral on a constant w 
surface, 

where the brackets denote flux surface average, 
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and V@ = a(ji &)/a~ = 272 Ii” X de. Equation (9a) can be used to eliminate the 
toroidal field function g from the equilibrium equation (3a) in favor of the safety 
factor q. As discussed in Ref. [2], the form of the equilibrium equation so obtained, 
with pk) and qk) as the two free functions, is often convenient to use in stability 
studies. From Eq. (9a), we have 

xigg’ = (27Q2 
( (xy, ), (x-& ’ Pb) 

and from surface averaging Eq. (3a), and using Eq. (9b), 

(X” (F) 4 = -w [ 4nv,P’ + (2n)‘q($+-j a]. (10) 

Now, xi,,* can be eliminated from Eq. (9b) using Eq. (IO), and the result can be com- 
bined with Eqs. (3) to express the equilibrium equation as 

[ (27~) *A* - A (i?/c%y)]x = -47rBP’. (114 

Here 

A = (W2q3 -(($) v$$y, D(x-*)3v; 
B= [(x2-$&$&) +x*v,( $#, 

(lib) 

(1 lc) 

(lid) 

Equation (1 la) is the form of the equilibrium equation solved numerically when the 
functions pk) and q&) are given. Using 

PW = POV - 1 I”, (1 14 
401) = q,{2/A I43 (110 

where II = { 1 + 3[x( 1) -x(w)]/[x(l) -x(O)]} “*, we have produced the high /I 
equilibrium reported in Ref. [8] and discussed in more detail in Section V. When 
specifying qk) in this manner, a further constraint is imposed, that the total poloidal 
flux, Ax =x( 1) - x(O), remain fixed. 

III. FIXED BOUNDARY SOLUTION METHOD 

The iterative metric method of solving the equilibrium equation inside of a 
plasma/vacuum interface whose shape is held fixed consists of the following steps: 

SRI /27/2~4 
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A. Guess an initial coordinate transformation corresponding to iteration level 
k = 0, 

<xy,j5 zy,j); i= 1,M; j= 1, N. 

This initial transformation must have a Jacobian finite everywhere except possibly at 
j = 1, the magnetic axis. The points corresponding to j = N define the plasma boun- 
dary. 

B. Solve the generalized coordinate equilibrium equation for the poloidal flux at 
the new iteration level, k + 1, using the coordinate transformation at the old iteration 
level, k; i.e., obtain ftk+‘) by solving the finite difference form of the equilibrium 
equation (3a), 

VW 

where 

A*(k) Ez (x?Y-‘)‘k’ {(a/aIq)[h”“k’(a/ay/) + wk’(a/ae)] 
+ (ape) [ h”e’k’(a/ay/) + hoe’k’(a/ae)]}, (12b) 

or of the equilibrium equation (1 la), 

[(2?T-2d”‘k -&k’(qav)jf’k+‘) = -4,&k’p’[?k+ l)]. (12c) 

As a boundary condition on Eqs. (12a) and (12~) we take x70, 1) =O. 
C. Interpolate using the poloidal flux at the new iteration level, ijy I), to define 

the coordinate functions at the new iteration level, x17 i) and zf,;“), such that the 
finite difference forms of the requirement that the poloidal flux be constant along con- 
stant w surfaces and that the Jacobian have the form of Eq. (3b) are satisfied; i.e., 

(i) fhk’ ‘) = 0, and 
(ii) [x(xtizO - x,z,)]‘k+‘)=iu[x’k+“/x,]m~/“. 

D. Iterate Steps B and C until the poloidal flux at the end of Step B is independent 
of 8 to some tolerance. 

Next, Steps A through C will be described in more detail. 

Step A 

An initial coordinate transformation is constructed as follows: Define the shape of 
the plasma boundary by giving the Cartesian coordinates of N boundary points, 
(Xiq& z$ i = 1, M). The interior points are then defined by 

x& = (I/+)‘” + ‘“‘(x;,,~ - R) + R, 
& = ( lyj)@ + ’ )‘2z;*,v, 

where i = l,..., M; j = l,..., N. The point corresponding to x = R and z = 0 must lie in 
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the interior of the curve defined by the M boundary points. For example for a D- 
shaped plasma boundary, we choose the boundary points to be 

x~,,~ = R + a cos(8, + 6 sin 0,) 
zi .=&a sin Oi, 

where R, a, E, and 6 are constants. 

Step B 

Either Eq. (12a) or Eq. (12~) is solved numerically for the poloidal flux at the new 
iteration level, k + 1. The finite difference form of Eq. (12b) is 

A*‘k’J?k+ ‘) 

E .u2.P “k’[-(H~,~+ l/2 + -fffy-,,/, + Hy+BI/zLj + Hf’~I/2,,i)~~/’ ‘) 

+ W%.i + Hy%y... I,z),f~Y:~~- 1 + (Hc,T- l/2 - Hfj I,z,,j + Hy!,,/2,)s!ji ‘1’ 

-(H~~I,Z,.j+H~$~,,Z)~::fl~, -(H~~+,,,-H~,B-.,!2-HHB0,,z.j>x~”:tl 

- (Hy,y+ 112 + HY!,/Z.j)X;!k_:.I)+ 1 + (Hy.T+ I;2 - ffYsy~ I/2 + ffY~I/Z,jlt$::~,! 

+ (HFfts/>.j + fC,j”+ 1/2>Xl.kt’ifi)+ 1 + (Hf.:+ 1/2 + H?!I,z,j - Hfe ~-IlZ,jlZ~ji’I’l7 (13) 

where 
HO@’ = [ f~“/(hy)~]‘~), (14a) 

H”@  = [huo/(46iy/60)]‘k’, (14b) 

He0 = [he”/(68)2]‘k’. (14c) 

The metric terms Pi, h@, hoe, .P and the surface averages V,, (x-‘), (PO/.P) are 
evaluated from the finite difference forms of Eqs. (2~) through (2f) using centered dif- 
ference operators on [xj”,‘, z$)]. Either Eq. (12a) or Eq. (12c), together with the boun- 
dary condition ij!frzt” = 0, is solved for fCk+ ” by the successive over-relaxation 
method. Before each over-relaxation sweep begins either y is readjusted to keep the 
total plasma current a constant (p and g prescribed) or f is scaled everywhere to 
keep f( 1) -f(O) constant (p and q prescribed). Thus, for ‘the p and g method, we 
define 

Ai-f(l) -i(O). 
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Then y is adjusted to satisfy the quadratic equation 

1, = -2n 5 5 f3~iiO~,j P’@i,j) + Yt4’)-’ xo 
[=I j=l [ ( 1. x * g~Cfi,,i) 

- y2(47?-’ (q)~,jg2Ei,j)]* ij 

We note here that if i is a solution to the fixed boundary problem, then i plus any 
constant is also a solution. We choose the constant in this section so that f vanishes 
on the boundary. In the next section, it is shown that this constant is determined in 
the free boundary problem by the requirement that x match onto a vacuum solution 
which vanishes at infinity. 

The point w = 0 is a singularity in the (v, 0, 4) coordinate system and thus requires 
special treatment. To obtain the value of i at that point we assume that fis analytic 
there and has a Taylor series expansion of the form 

x’= uoo + U’OX + aolz + uZ0x2 + d’xz + a**z* + “’ ) (154 

where the uii are constants. It can be shown from Eq. (3b) that x and z have a 
Fourier series expansion about the origin of the form 

x=R+b;,@+“‘*(l +b;,i+P+‘+ ...)cosd 

+b:ov 
(ftt I)(1 + b;, ,$I+ 1 + .,.)cos28+ “‘) WI 

z=bfoy’“t’“2(1 +b;,ty”+‘+ . ..)sino 

+biovn+l(l +b;,~n+‘+...)sin28+ . . . . (15c) 

where the b; are constants. Substituting Eqs. (15b) and (15~) into Eq. (15a) and 
averaging over the angle 0 gives an expansion for the surface averaged poloidal flux, 

~)=~+byl’“+“+cW*‘“+“+.... (16) 

Here the surface average operator has been defined as 

The value of 2 at the origin, p in Eq. (16), is obtained by fitting the three constants 
in Eq. (16) to the values of (x) on the second, third, and fourth magnetic surfaces. 
Thus, the value of x at the origin is given as 
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where 

U’ = (lV+’ - l,““)/d, (17b) 

u* = (3n+’ -9n+‘)/d, (17c) 

u, = (4”+’ - 2”+‘)/d, (17d) 

and 

~~(~~~+‘-~~“+~)+(4~+‘~~“+~)+(~~+~-~~+~)~ We) 

Step C 

The coordinate functions xiJ and zi,j are redefined to be consistent with 
X -‘kf”(& w). This is done in four parts: 

(1) Points are moved along Bi surfaces so that vi surfaces lie on constant Tkt ” 
surfaces (Fig. 2). This is accomplished by first calculating the finite difference form 
of I; i.e., for each vj surface we calculate 

X -++‘)(yj) = ; i j$+ 1). 
1-l 

The coordinates x!:.+ ‘j3’ and zi”j’ l/3) are then defined to be the x and z coordinates of 
the point along thLJsurface Bi, where iCkf “(tYi, u/) is equal to 2” “)(wi). Quadratic in- 
terpolation is used to define $kt ” (O,, w) between grid points using the arc length 
along the 19~ surface as the independent variable. 

FIG. 2. Points are moved along 0 surfaces to lie on constant f”’ ‘) surfaces. 
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(2) Constant I+Y surfaces are respaced to satisfy the surface averaged metric con- 
dition. From Eq. (3b), I,V and 8 should have the property that 

dy/ dB.P(k+ lf3’ = dip dtl [p(~ll)“,n]. (18) 

By putting all the 0 dependence on the left side of the above equation, integrating 
from 0 = 0 to 0 = 2771, and then integrating from I,V = 0 to v = Wj, we obtain a new 
value of the coordinate function wi associated with each constant j surface; i.e., 

(19) 

We define new v values linear inj; i.e., 

The coordinates xi? 2’3’ and z!?*‘~’ are then redefined to be the x and z coordinates 
of the point along the surface Bi where w = @. Quadratic interpolation is again used 
to define IJI between integral j values. Notice that the constant [xr(n + l)/,~]t”(~+‘)~ is 
never used in this part of Step C since both I& and vj are linear in this term. 

(3) Constant 0 surfaces are next respaced to satisfy the metric condition within 
each flux surface. Using Eq. (18) we find that the new value of the coordinate func- 
tion 8, associated with each constant i surface is 

For each surface vj we define new 6 values linear in i; i.e., 

The coordinates xi? ‘) and zifl,’ ‘) are finally redefined to be the x and z coordinates 
of the point along the surface vj where 13 = c. The effects of respacing the 0 surfaces 
can be seen in Fig. 3. 

(4) Finally, the normalization constant P is recalculated so that w,,, = 1. From 
Eq. (191, 

Solving Eq. (23) for ~1 we obtain 

(23) 
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FIG. 3. Before (left) and after (right) respacing the 6 lines to satisfy the metric condition on each 
flux surface. 

“*(k) y (k+l) = 2nxJ 
k=k+l 6 

x (k+l) -0 at ,b=l 

(b) X(XJIZo - yJ=$) 
(k+l) = ;,[( $k+l)]m~~n 

FIG. 4. Flow chart of the solution to the fixed boundary problem. 
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TABLE 1 

Number of SOR Iterations Required for 
Each Metric Iteration for a Typical 

Fixed Boundary Equilibrium Calculation 

k SOR iterations 

0 612 
1 315 
2 225 
3 115 
4 53 
5 5 
6 1 

For m = 1 and n = 0 parts (2) and (3) of this step are equivalent to equalizing the 
area of each computational zone. A schematic diagram of the solution to the futed 
boundary problem is given in Fig. 4. 

Each metric iteration through Steps B and C requires successively fewer SOR 
iterations to converge since the initial conditions for the SOR iteration improve with 
each successive metric iteration. We show in Table I the number of SOR iterations 
required for each metric iteration for a typical fixed boundary equilibrium calcula- 
tion. This had 61 0 zones, 15 w zones, n = 0, m = 1, with a circular boundary with 
a = 0.3 and R = 1.25. The functions ph) and gk) were given with p,, =0.0002, 
(r = 2, /J = 2, I, = 0.0255. The over-relaxation parameter and tolerance were w = 1.7 
and E = lo-‘. It is observed that the number of SOR iterations decreases by approx- 
imately a factor of 2 for each successive metric iteration. 

Once the equilibrium inside of the plasma has been solved, the vacuum solution 
can be determined. This is discussed in the next section as part of the free boundary 
equilibrium problem. A least-squares method for determining a vacuum solution con- 
sistent with a plasma of arbitrary shape is discussed in Appendix A. 

IV. FREE BOUNDARY SOLUTION METHOD 

In the free boundary problem the locations and strengths of K external coils are 
specified as (xk; k = l,..., K}, {I,; k = l,..., K}. The shape of the plasma/vacuum 
boundary consistent with these current sources is then obtained as part of the solu- 
tion. 

In the plasma region the poloidal flux function x satisfies 

xv (x-’ Vx) = 8n2xVfi . J GW 
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and in the vacuum region 

XV (x-’ Vx) = 87~~ 5 1,6(x - xk). Pb) 
k=I 

We introduce the free space toroidal Green’s function 

G(x, x’) = -(xx’)“*( (2 - k*) K(k*) - 2E(k*)]/k, 

where K(k*) and E(k*) are complete elliptic integrals and 

(264 

k* = 4xx’/[ (x + x’)’ + (z - z’)‘]. (26b) 

This satisfies 

XV [x-’ VG(x, x’)] = 27&(x - x’). (27) 

Green’s theorem can be used to express the solution of Eq. (25) in the form 

x(xT) = 472 I 
d4 xV# . JG(x,, x) + 5 47rZ,G(x,, xk), 

k=l 
(28) 

where the surface integral is over the plasma cross section. The free constant in the 
solution for x has been chosen so that x vanishes far from the plasma. 

The surface integral appearing in Eq. (28) is expensive to evaluate numerically. It 
can be converted to a line integral by noting that if i satisfies 

xV(x-*V~)=8x*xV~~J (29) 

in the plasma region and vanishes on the plasma boundary, then Green’s theorem can 
again be used to express Eq. (28) in the form 

if the point xr is outside the plasma, and 

if the point xT is inside the plasma. 
The contour of integration is the plasma/vacuum interface. Equation (30) is easily 

extended to include an outer wall of finite radius. This is discussed in Appendix B. 
The solution of the free boundary problem consists of the following steps: 

A. G ive the positions and strenghts of K external conductors and the locations of 
p limiter points. 
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B. Guess an initial shape for the plasma/vacuum boundary corresponding to outer 
iteration level q = 0: 

Ix::;., z;p;4 i = I,..., M. 

C. Determine x7”‘(~) inside the level q set of boundary points by the procedure 
described in Section III. 

D. Using Eq. (30) to define x(9+1) as a functional of $4) and the external conduc- 
tors, define xii,,, to be the minimum value of x(4+1) among ail the limiter points. 

E. Define the boundary points [xi2 ‘), ZIP,“] as the points along the constant Bi 
contours where x’~+‘) from Eq. (30) is equal to xlim from Step D (see Fig. 5). 

F. Iterate Steps C through E until the new boundary points in E are the same as 
the old boundary points to some tolerance. 

To locate the new boundary points in Step E, a binary search for xii,,, is carried out 
along lines which are straight outside of the plasma/vacuum boundary and are 
constant 0 lines inside. Equation (30) is used to define x everywhere. The line integral 
is approximated by A4 line segments Al,. For example, for xT inside the 
plasma/vacuum interface we have 

834’ G(x,T Xi,N) 7 ( 1 i 
+ i 4nIkG(xT, xk). 

k= I 

+ 

+ 

t 

\ \X& : 
Old bundory 

I Point 

\ External Coils 
lt 

FIG. 5. Redefine the plasma/vacuum boundary as the x=x,,~ surface. 

W) 
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Special care must be taken for xT lying on the plasma/vacuum boundary since 
/G(x,, xs)i becomes singular as xT. approaches x,. Thus, for xT coinciding with one of 
the boundary points xT,,\,, we have 

X (‘+ “(x,) = ig, & G(x,, xi,,,) ($) 
1.N I 

i#7 

I( 

+ 2 47d,G(x,, xk), @lb) 
k-l 

where the “self field” term can be approximated by 

(31c) 

The terms (ai/&) in Eq. (3 1) are approximated by a second order accurate finite dif- 
ference formula applied at the plasma boundaryj= N 

V. VERIFICATION AND APPLICATIONS 

We can test the accuracy of the iterative metric method by numerically calculating 
the solution to a problem for which the analytic solution is known [9 J. The solution 
to the equilibrium equation for p’ equal to a constant and gg’equal to zero, i.e., CI = 1 
in Eq. (3) and p = 0 in Eq. (4), can be written 

X(XYZ> =x(l) + MO> -x(1)lf(x,z), (33a) 
where 

j-(x, z) = 1 - (M-2 [ x2z2 + (q/4)(x2 -R*)*] WI 

and 

(33c) 

R is the distance from the symmetry axis to the magnetic axis, S is the perpendicular 
distance from the magnetic axis to the plasma vacuum boundary, p. is the pressure at 
the magnetic axis, x(O) and x(1) are the poloidal fluxes at the magnetic axis and the 
plasma/vacuum boundary respectively, (1 - r-r)r’* is the ellipticity at the magnetic 
axis for q > 1 and nS*x,/R[~(l) -x(O)] is the safety factor at the magnetic axis for 
v = 1. The plasma/vacuum boundary is given by the equation f(x, I) = 0. Using the 
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procedure described in Section III, we solve the equilibrium equation inside the 
boundary using a very fine tolerance for the SOR iteration. Letting fij equal the 
poloidal flux at (Xi,j, Zi,j) given by Eq. (33), and xaXis equal the position of the 
magnetic axis given by the numerical solution we calculate the quantities 

Xerr- [MNIX(l)-X(oI-’ 5 f Ix’i,.j- [Xi,j-X(l)lI 
.j=l i=l 

(344 

and 

X err = R-’ IR -xaxisl WI 
for several combinations of M and N. Values of xerr and x,,, for S = 1, R = 5, 
x(1) = 0, x(O) = -1.759, q = 1, and several combinations of M and N are given in 
Tables IIa and IIb. The values of xerr and x,,, are seen to decrease as the number of 
both w and 8 zones increase. 

To test the free boundary method, we first generate a set of coil currents which 
gives a vacuum solution to the fixed boundary test just described. This is accom- 

TABLE IIa 

,yerr in Units of tom4 (Eq. (34a)) 

M N 

10 15 20 

20 6.51 1.93 8.56 

40 4.51 1.96 1.54 

60 4.98 1.96 1.02 

TABLE IIb 

x,,,in Units of 10m4 (Eq. (34b)) 

M N 

10 15 20 

20 7.90 2.96 1.1 I 

40 9.03 4.08 2.26 

60 9.18 4.29 2.46 
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FIG. 6. Flux surfaces of a standard Princeton Poloidal Divertor Experiment equilibrium. 

plished using the least-squares method described in Appendix A. We then look for the 
solution to the equilibrium equation using the p and g procedure described in 
Section IV with the input a = 1 and I, equal to the toroidal current from the fixed 
boundary test. The quantity y is constrained to be zero for this test and the limiter is 
one point (Xlim, Zlim) such that J(x,~,,,, zlim) = 0. The numerical solution with 48 t9 
zones and 18 I zones gives the position of the magnetic axis as 4.996, the poloidal 
flux at the axis as -1.77 1, and the safety factor at the axis as 1.603. The position of 

c 

I 

FIG. 7. Midplane current density profiles for various values of PT. 
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the magnetic axis, the poloidal flux on axis, and the safety factor at the axis given by 
the analytic solution are respectively 5.000, -1.759, and 1.614. 

One of the applications of the iterative metric method is to generate Princeton 
Poloidal Divertor Experiment (PDX) equilibria for subsequent axisymmetric stability 
analysis. The limiting value of the poloidal flux in a PDX plasma is chosen to be 
slightly less than the flux at the separatrix in the poloidal magnetic field. In Fig. 6 the 
flux surfaces of a typical PDX plasma are shown. The total plasma current is 
500kA. Other parameters are (x=/3=2, m= 1, n=O, M=40, N= 15, and 
x0 = 1.25. The magnetic axis for this case lies at x = 128.41 cm. 

An instance in which this equilibrium solution method proved invaluable was in 

I” 

92 96 100 104 108 

FIG. 8a. Current contours for p, = 0.020. 

FIG. 8b. Flux surfaces for 8, = 0.020. 
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the study of high beta internal mode stability [S]. Initial attempts to generate 
equilibria for stability analysis using the functional forms of Eqs. (1 le) and (1 If) in 
the standard (x, $, z) equilibrium code [2], were unsuccessful at values of 
p,. = 87rp/Bc 2 a/R. Consideration of the midplane current density profiles for 
various values of /I, as shown in Fig. 7 illustrates the problem. For p, 2 R/a - 0.1, 
the current density is small throughout most of the plasma with a large spike at the 
outer plasma edge. Resolution of the current density in real space is poor because of 
the spatially localized gradients. However, in flux space, the grid is naturally crowded 
towards the region of large gradients and accurate solutions are obtainable. 
Sequences of equilibria with fixed qk), Ax and varying p,, were generated from /I, = 0 
to p, = 0.25. Figures 8 and 9 show solutions at pT = 0.020 and PT = 0.225. Both 

-,oL-- 
92 96 100 I04 10.8 

FIG. 9a. Current contours for /3r = 0.225. 

FIG. 9b. Flux surfaces for /3, = 0.225. 
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have a = 4, jI = 1, and Ax = 0.375. These equilibria were used to analyze the ideal 
internal and free surface mode stability [3] as a function of 8,. These results 
confirmed the existence of a high /I region of stability to internal modes, and 
demonstrated high /3 saturation of the free surface modes. 

VI. SUMMARY AND DISCUSSION 

A new algorithm has been described for the calculation of MHD equilibria of ax- 
isymmetric toroidal plasmas. The method uses finite differences in a generalized coor- 
dinate system which is iterated for simultaneously with the equilibrium solution until 
one coordinate coincides with the magnetic surfaces. Special treatment of the dif- 
ference equations to yield accurate solutions near the magnetic axis is discussed. 

The method described here automatically accumulates grid points in regions of 
steep gradients, thus yielding accurate solutions of high p equilibria. The pressure 
pk) and either the toroidal field function gk) or the safety factor qk) can be 
prescribed, allowing computation of sequences of FCT equilibria where qk) remains 
fixed. Solution procedures for both fixed boundary equilibria where the shape of the 
outer magnetic flux surface is prescribed, and free boundary equilibria where a set of 
external coils define the magnetic boundary conditions have been described, and ex- 
amples of each are given. Comparison of computed solutions with an analytic 
equilibrium illustrate accuracy and convergence properties. 

The advantages of obtaining equilibrium using magnetic field line coordinates have 
been recognized for some time. Potter [lo] describes a pseudotime advancement 
algorithm based on the water bag method for allowing residual forces to push 
magnetic surfaces to equilibrium. While successful, this method suffers an intrinsic in- 
efficiency resulting from the wide range of time scales physically present in the nor- 
mal modes of the plasma. Low-frequency motions with small restoring forces take a 
large number of computational cycles to relax to equilibrium. 

More recently, a finite element method for obtaining MHD equilibrium solutions 
has been described by Takeda et al. [ 111. In this work, as with the present method, 
the mesh structure is iteratively solved for together with the poloidal flux solution, so 
that the final solution has finite elements aligned along magnetic surfaces. However, 
it does not allow for the specification of the rotational transform qh) and it does not 
solve free boundary problems in which the external coils determine the shape of the 
outer magnetic flux surface. 

APPENDIX A 

We can obtain a vacuum solution [2] consistent with a plasma of arbitrary 
shape by calculating a set of coil currents which minimize the least-squares error bet- 
ween the desired value of flux on the boundary and the value given by Eq. (30a). If 
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we let xbi denote the jth boundary point and xk the position of the kth coil, we can 
obtain a ‘linear system for the currents by minimizing the quantity 

(35) 

where x, is the desired value of poloidal flux on the plasma/vacuum boundary and Z 
is a (small) quantity which may be needed for numerical stability. Thus, 

X G(Xbj, Xl) + rZ, = 0 (364 
or 

where 

A.B=C, Pb) 

A,,= 5 G(Xbj,XI)G(Xbj,X,)+rs,m, 
j=l 

B, = 4nZm, 

(36~) 

(364 

Equation (36) is solved numerically for the I, using standard LU decomposition. 

APPENDIX B 

Here we consider the vacuum solution when a conducting wall of arbitrary shape 
surrounds the vacuum region. The analog of Eq. (30) now reads 

x(',)-L=$~$(I,,x)~+ 5 47d,G(x,,x,) 
k= I 

- 
16 

-?f- G(x,, x) 2 
w‘ 2?m 

if the point xT is in the vacuum region, and 

x(“d-xw=j+%~ - x)$;+ i 47rZ,G(x,.,x,) 
k=l 

- 
P 

-d_f_ G(x,, x) s+ X'x,.) 
cl' 27w 

(37a) 

(37b) 
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if xT is the plasma region. Here, x,,, is the poloidal flux at the wall and the two line in- 
tegrals are over the plasma/vacuum interface and the wall. 

If Eq. (37) is to be used to define x(x~), ax/an must be known at the wall. To ob- 
tain this, Eq. (37a) is evaluated at J points (xbj,j = l,..., J) equally spaced around the 
outer wall. Thus, we obtain the linear system 

= bi, 

where 

bi= gyG(xbi,X)$+ i ~~,G(x,,,x,), Q k=l 

aij = 27 G(x~, xbj) for i#j, 

aii=$ iitl($-) + I]. 

(384 

Wb) 

(38~) 

Wd) 

The system Eq. (38a) is inverted to give ax/an at the wall. This is then used to 
evaluate the wall integral in Eq. (37) and one proceeds as with Eq. (30). 
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